
Chapter 5

Divide and Conquer

Divide and conquer refers to a class of algorithmic techniques in which one

breaks the input into several parts, solves the problem in each part recursively,

and then combines the solutions to these subproblems into an overall solution.

In many cases, it can be a simple and powerful method.

Analyzing the running time of a divide and conquer algorithm generally

involves solving a recurrence relation that bounds the running time recursively

in terms of the running time on smaller instances. We begin the chapter with

a general discussion of recurrence relations, illustrating how they arise in the

analysis and describing methods for working out upper bounds from them.

We then illustrate the use of divide and conquer with applications to

a number of different domains: computing a distance function on different

rankings of a set of objects; finding the closest pair of points in the plane;

multiplying two integers; and smoothing a noisy signal. Divide and conquer

will also come up in subsequent chapters, since it is a method that often works

well when combined with other algorithm design techniques. For example, in

Chapter 6 we will see it combined with dynamic programming to produce a

space-efficient solution to a fundamental sequence comparison problem, and

in Chapter 13 we will see it combined with randomization to yield a simple

and efficient algorithm for computing the median of a set of numbers.

One thing to note about many settings in which divide and conquer

is applied, including these, is that the natural brute-force algorithm may

already be polynomial time, and the divide and conquer strategy is serving

to reduce the running time to a lower polynomial. This is in contrast to most

of the problems in the previous chapters, for example, where brute force was

exponential and the goal in designing a more sophisticated algorithm was to

achieve any kind of polynomial running time. For example, we discussed in

210 Chapter 5 Divide and Conquer

Chapter 2 that the natural brute-force algorithm for finding the closest pair

among n points in the plane would simply measure all �(n2) distances, for

a (polynomial) running time of �(n2). Using divide and conquer, we will

improve the running time to O(n log n). At a high level, then, the overall theme

of this chapter is the same as what we’ve been seeing earlier: that improving on

brute-force search is a fundamental conceptual hurdle in solving a problem

efficiently, and the design of sophisticated algorithms can achieve this. The

difference is simply that the distinction between brute-force search and an

improved solution here will not always be the distinction between exponential

and polynomial.

5.1 A First Recurrence: The Mergesort Algorithm
To motivate the general approach to analyzing divide-and-conquer algorithms,

we begin with the Mergesort Algorithm. We discussed the Mergesort Algorithm

briefly in Chapter 2, when we surveyed common running times for algorithms.

Mergesort sorts a given list of numbers by first dividing them into two equal

halves, sorting each half separately by recursion, and then combining the

results of these recursive calls—in the form of the two sorted halves—using

the linear-time algorithm for merging sorted lists that we saw in Chapter 2.

To analyze the running time of Mergesort, we will abstract its behavior into

the following template, which describes many common divide-and-conquer

algorithms.

(†) Divide the input into two pieces of equal size; solve the two subproblems

on these pieces separately by recursion; and then combine the two results

into an overall solution, spending only linear time for the initial division

and final recombining.

In Mergesort, as in any algorithm that fits this style, we also need a base case

for the recursion, typically having it “bottom out” on inputs of some constant

size. In the case of Mergesort, we will assume that once the input has been

reduced to size 2, we stop the recursion and sort the two elements by simply

comparing them to each other.

Consider any algorithm that fits the pattern in (†), and let T(n) denote its

worst-case running time on input instances of size n. Supposing that n is even,

the algorithm spends O(n) time to divide the input into two pieces of size n/2

each; it then spends time T(n/2) to solve each one (since T(n/2) is the worst-

case running time for an input of size n/2); and finally it spends O(n) time

to combine the solutions from the two recursive calls. Thus the running time

T(n) satisfies the following recurrence relation.

5.1 A First Recurrence: The Mergesort Algorithm 211

(5.1) For some constant c,

T(n) ≤ 2T(n/2) + cn

when n > 2, and

T(2) ≤ c.

The structure of (5.1) is typical of what recurrences will look like: there’s an

inequality or equation that bounds T(n) in terms of an expression involving

T(k) for smaller values k; and there is a base case that generally says that

T(n) is equal to a constant when n is a constant. Note that one can also write

(5.1) more informally as T(n) ≤ 2T(n/2) + O(n), suppressing the constant

c. However, it is generally useful to make c explicit when analyzing the

recurrence.

To keep the exposition simpler, we will generally assume that parameters

like n are even when needed. This is somewhat imprecise usage; without this

assumption, the two recursive calls would be on problems of size ⌈n/2⌉ and

⌊n/2⌋, and the recurrence relation would say that

T(n) ≤ T(⌈n/2⌉) + T(⌊n/2⌋) + cn

for n ≥ 2. Nevertheless, for all the recurrences we consider here (and for most

that arise in practice), the asymptotic bounds are not affected by the decision

to ignore all the floors and ceilings, and it makes the symbolic manipulation

much cleaner.

Now (5.1) does not explicitly provide an asymptotic bound on the growth

rate of the function T; rather, it specifies T(n) implicitly in terms of its values

on smaller inputs. To obtain an explicit bound, we need to solve the recurrence

relation so that T appears only on the left-hand side of the inequality, not the

right-hand side as well.

Recurrence solving is a task that has been incorporated into a number

of standard computer algebra systems, and the solution to many standard

recurrences can now be found by automated means. It is still useful, however,

to understand the process of solving recurrences and to recognize which

recurrences lead to good running times, since the design of an efficient divide-

and-conquer algorithm is heavily intertwined with an understanding of how

a recurrence relation determines a running time.

Approaches to Solving Recurrences

There are two basic ways one can go about solving a recurrence, each of which

we describe in more detail below.

212 Chapter 5 Divide and Conquer

. The most intuitively natural way to search for a solution to a recurrence is

to “unroll” the recursion, accounting for the running time across the first

few levels, and identify a pattern that can be continued as the recursion

expands. One then sums the running times over all levels of the recursion

(i.e., until it “bottoms out” on subproblems of constant size) and thereby

arrives at a total running time.

. A second way is to start with a guess for the solution, substitute it into

the recurrence relation, and check that it works. Formally, one justifies

this plugging-in using an argument by induction on n. There is a useful

variant of this method in which one has a general form for the solution,

but does not have exact values for all the parameters. By leaving these

parameters unspecified in the substitution, one can often work them out

as needed.

We now discuss each of these approaches, using the recurrence in (5.1) as an

example.

Unrolling the Mergesort Recurrence

Let’s start with the first approach to solving the recurrence in (5.1). The basic

argument is depicted in Figure 5.1.

. Analyzing the first few levels: At the first level of recursion, we have a

single problem of size n, which takes time at most cn plus the time spent

in all subsequent recursive calls. At the next level, we have two problems

each of size n/2. Each of these takes time at most cn/2, for a total of at

most cn, again plus the time in subsequent recursive calls. At the third

level, we have four problems each of size n/4, each taking time at most

cn/4, for a total of at most cn.

cn/2 cn/2

cn/4 cn/4 cn/4cn/4

cn
Level 0: cn

Level 1: cn/2 + cn/2 = cn total

Level 2: 4(cn/4) = cn total

Figure 5.1 Unrolling the recurrence T(n) ≤ 2T(n/2) + O(n).

5.1 A First Recurrence: The Mergesort Algorithm 213

. Identifying a pattern: What’s going on in general? At level j of the

recursion, the number of subproblems has doubled j times, so there are

now a total of 2j. Each has correspondingly shrunk in size by a factor

of two j times, and so each has size n/2j, and hence each takes time at

most cn/2j. Thus level j contributes a total of at most 2j(cn/2j) = cn to

the total running time.

. Summing over all levels of recursion: We’ve found that the recurrence

in (5.1) has the property that the same upper bound of cn applies to

total amount of work performed at each level. The number of times the

input must be halved in order to reduce its size from n to 2 is log2 n.

So summing the cn work over log n levels of recursion, we get a total

running time of O(n log n).

We summarize this in the following claim.

(5.2) Any function T(·) satisfying (5.1) is bounded by O(n log n), when

n > 1.

Substituting a Solution into the Mergesort Recurrence

The argument establishing (5.2) can be used to determine that the function

T(n) is bounded by O(n log n). If, on the other hand, we have a guess for

the running time that we want to verify, we can do so by plugging it into the

recurrence as follows.

Suppose we believe that T(n) ≤ cn log2 n for all n ≥ 2, and we want to

check whether this is indeed true. This clearly holds for n = 2, since in this

case cn log2 n = 2c, and (5.1) explicitly tells us that T(2) ≤ c. Now suppose,

by induction, that T(m) ≤ cm log2 m for all values of m less than n, and we

want to establish this for T(n). We do this by writing the recurrence for T(n)

and plugging in the inequality T(n/2) ≤ c(n/2) log2(n/2). We then simplify the

resulting expression by noticing that log2(n/2) = (log2 n) − 1. Here is the full

calculation.

T(n) ≤ 2T(n/2) + cn

≤ 2c(n/2) log2(n/2) + cn

= cn[(log2 n) − 1]+ cn

= (cn log2 n) − cn + cn

= cn log2 n.

This establishes the bound we want for T(n), assuming it holds for smaller

values m < n, and thus it completes the induction argument.

214 Chapter 5 Divide and Conquer

An Approach Using Partial Substitution

There is a somewhat weaker kind of substitution one can do, in which one

guesses the overall form of the solution without pinning down the exact values

of all the constants and other parameters at the outset.

Specifically, suppose we believe that T(n) = O(n log n), but we’re not

sure of the constant inside the O(·) notation. We can use the substitution

method even without being sure of this constant, as follows. We first write

T(n) ≤ kn logb n for some constant k and base b that we’ll determine later.

(Actually, the base and the constant we’ll end up needing are related to each

other, since we saw in Chapter 2 that one can change the base of the logarithm

by simply changing the multiplicative constant in front.)

Now we’d like to know whether there is any choice of k and b that will

work in an inductive argument. So we try out one level of the induction as

follows.

T(n) ≤ 2T(n/2) + cn ≤ 2k(n/2) logb(n/2) + cn.

It’s now very tempting to choose the base b = 2 for the logarithm, since we see

that this will let us apply the simplification log2(n/2) = (log2 n) − 1. Proceeding

with this choice, we have

T(n) ≤ 2k(n/2) log2(n/2) + cn

= 2k(n/2)[(log2 n) − 1]+ cn

= kn[(log2 n) − 1]+ cn

= (kn log2 n) − kn + cn.

Finally, we ask: Is there a choice of k that will cause this last expression to be

bounded by kn log2 n? The answer is clearly yes; we just need to choose any

k that is at least as large as c, and we get

T(n) ≤ (kn log2 n) − kn + cn ≤ kn log2 n,

which completes the induction.

Thus the substitution method can actually be useful in working out the

exact constants when one has some guess of the general form of the solution.

5.2 Further Recurrence Relations
We’ve just worked out the solution to a recurrence relation, (5.1), that will

come up in the design of several divide-and-conquer algorithms later in this

chapter. As a way to explore this issue further, we now consider a class

of recurrence relations that generalizes (5.1), and show how to solve the

recurrences in this class. Other members of this class will arise in the design

of algorithms both in this and in later chapters.

5.2 Further Recurrence Relations 215

This more general class of algorithms is obtained by considering divide-

and-conquer algorithms that create recursive calls on q subproblems of size

n/2 each and then combine the results in O(n) time. This corresponds to

the Mergesort recurrence (5.1) when q = 2 recursive calls are used, but other

algorithms find it useful to spawn q > 2 recursive calls, or just a single (q = 1)

recursive call. In fact, we will see the case q > 2 later in this chapter when we

design algorithms for integer multiplication; and we will see a variant on the

case q = 1 much later in the book, when we design a randomized algorithm

for median finding in Chapter 13.

If T(n) denotes the running time of an algorithm designed in this style,

then T(n) obeys the following recurrence relation, which directly generalizes

(5.1) by replacing 2 with q:

(5.3) For some constant c,

T(n) ≤ qT(n/2) + cn

when n > 2, and

T(2) ≤ c.

We now describe how to solve (5.3) by the methods we’ve seen above:

unrolling, substitution, and partial substitution. We treat the cases q > 2 and

q = 1 separately, since they are qualitatively different from each other—and

different from the case q = 2 as well.

The Case of q > 2 Subproblems

We begin by unrolling (5.3) in the case q > 2, following the style we used

earlier for (5.1). We will see that the punch line ends up being quite different.

. Analyzing the first few levels: We show an example of this for the case

q = 3 in Figure 5.2. At the first level of recursion, we have a single

problem of size n, which takes time at most cn plus the time spent in all

subsequent recursive calls. At the next level, we have q problems, each

of size n/2. Each of these takes time at most cn/2, for a total of at most

(q/2)cn, again plus the time in subsequent recursive calls. The next level

yields q2 problems of size n/4 each, for a total time of (q2/4)cn. Since

q > 2, we see that the total work per level is increasing as we proceed

through the recursion.

. Identifying a pattern: At an arbitrary level j, we have qj distinct instances,

each of size n/2j. Thus the total work performed at level j is qj(cn/2j) =
(q/2)jcn.

216 Chapter 5 Divide and Conquer

Level 0: cn total

Level 1: cn/2 + cn/2 + cn/2 = (3/2)cn total

Level 2: 9(cn/4) = (9/4)cn total

cn/2

cn/4 cn/4 cn/4

cn/2

cn/4 cn/4 cn/4

cn/2

cn/4 cn/4 cn/4

cn time, plus

recursive calls

Figure 5.2 Unrolling the recurrence T(n) ≤ 3T(n/2) + O(n).

. Summing over all levels of recursion: As before, there are log2 n levels of

recursion, and the total amount of work performed is the sum over all

these:

T(n) ≤
log2 n−1

∑

j=0

(

q

2

)j

cn = cn

log2 n−1
∑

j=0

(

q

2

)j

.

This is a geometric sum, consisting of powers of r = q/2. We can use the

formula for a geometric sum when r > 1, which gives us the formula

T(n) ≤ cn

(

r log2 n − 1

r − 1

)

≤ cn

(

r log2 n

r − 1

)

.

Since we’re aiming for an asymptotic upper bound, it is useful to figure

out what’s simply a constant; we can pull out the factor of r − 1 from

the denominator, and write the last expression as

T(n) ≤
(

c

r − 1

)

nr log2 n.

Finally, we need to figure out what r log2 n is. Here we use a very handy

identity, which says that, for any a > 1 and b > 1, we have alog b = blog a.

Thus

r log2 n = nlog2 r = nlog2(q/2) = n(log2 q)−1.

Thus we have

T(n) ≤
(

c

r − 1

)

n · n(log2 q)−1 ≤
(

c

r − 1

)

nlog2 q = O(nlog2 q).

We sum this up as follows.

5.2 Further Recurrence Relations 217

(5.4) Any function T(·) satisfying (5.3) with q > 2 is bounded by O(nlog2 q).

So we find that the running time is more than linear, since log2 q > 1,

but still polynomial in n. Plugging in specific values of q, the running time

is O(nlog2 3) = O(n1.59) when q = 3; and the running time is O(nlog2 4) = O(n2)

when q = 4. This increase in running time as q increases makes sense, of

course, since the recursive calls generate more work for larger values of q.

Applying Partial Substitution The appearance of log2 q in the exponent

followed naturally from our solution to (5.3), but it’s not necessarily an

expression one would have guessed at the outset. We now consider how an

approach based on partial substitution into the recurrence yields a different

way of discovering this exponent.

Suppose we guess that the solution to (5.3), when q > 2, has the form

T(n) ≤ knd for some constants k > 0 and d > 1. This is quite a general guess,

since we haven’t even tried specifying the exponent d of the polynomial. Now

let’s try starting the inductive argument and seeing what constraints we need

on k and d. We have

T(n) ≤ qT(n/2) + cn,

and applying the inductive hypothesis to T(n/2), this expands to

T(n) ≤ qk

(

n

2

)d

+ cn

= q

2d
knd + cn.

This is remarkably close to something that works: if we choose d so that

q/2d = 1, then we have T(n) ≤ knd + cn, which is almost right except for the

extra term cn. So let’s deal with these two issues: first, how to choose d so we

get q/2d = 1; and second, how to get rid of the cn term.

Choosing d is easy: we want 2d = q, and so d = log2 q. Thus we see that

the exponent log2 q appears very naturally once we decide to discover which

value of d works when substituted into the recurrence.

But we still have to get rid of the cn term. To do this, we change the

form of our guess for T(n) so as to explicitly subtract it off. Suppose we try

the form T(n) ≤ knd − ℓn, where we’ve now decided that d = log2 q but we

haven’t fixed the constants k or ℓ. Applying the new formula to T(n/2), this

expands to

218 Chapter 5 Divide and Conquer

T(n) ≤ qk

(

n

2

)d

− qℓ

(

n

2

)

+ cn

= q

2d
knd − qℓ

2
n + cn

= knd − qℓ

2
n + cn

= knd − (
qℓ

2
− c)n.

This now works completely, if we simply choose ℓ so that (
qℓ

2 − c) = ℓ: in other

words, ℓ = 2c/(q − 2). This completes the inductive step for n. We also need

to handle the base case n = 2, and this we do using the fact that the value of

k has not yet been fixed: we choose k large enough so that the formula is a

valid upper bound for the case n = 2.

The Case of One Subproblem

We now consider the case of q = 1in (5.3), since this illustrates an outcome

of yet another flavor. While we won’t see a direct application of the recurrence

for q = 1 in this chapter, a variation on it comes up in Chapter 13, as we

mentioned earlier.

We begin by unrolling the recurrence to try constructing a solution.

. Analyzing the first few levels: We show the first few levels of the recursion

in Figure 5.3. At the first level of recursion, we have a single problem of

size n, which takes time at most cn plus the time spent in all subsequent

recursive calls. The next level has one problem of size n/2, which

contributes cn/2, and the level after that has one problem of size n/4,

which contributes cn/4. So we see that, unlike the previous case, the total

work per level when q = 1 is actually decreasing as we proceed through

the recursion.

. Identifying a pattern: At an arbitrary level j, we still have just one

instance; it has size n/2j and contributes cn/2j to the running time.

. Summing over all levels of recursion: There are log2 n levels of recursion,

and the total amount of work performed is the sum over all these:

T(n) ≤
log2 n−1

∑

j=0

cn

2j
= cn

log2 n−1
∑

j=0

(

1

2j

)

.

This geometric sum is very easy to work out; even if we continued it to

infinity, it would converge to 2. Thus we have

T(n) ≤ 2cn = O(n).

5.2 Further Recurrence Relations 219

cn/2

cn/4

cn time, plus

recursive calls Level 0: cn total

Level 1: cn/2 total

Level 2: cn/4 total

Figure 5.3 Unrolling the recurrence T(n) ≤ T(n/2) + O(n).

We sum this up as follows.

(5.5) Any function T(·) satisfying (5.3) with q = 1 is bounded by O(n).

This is counterintuitive when you first see it. The algorithm is performing

log n levels of recursion, but the overall running time is still linear in n. The

point is that a geometric series with a decaying exponent is a powerful thing:

fully half the work performed by the algorithm is being done at the top level

of the recursion.

It is also useful to see how partial substitution into the recurrence works

very well in this case. Suppose we guess, as before, that the form of the solution

is T(n) ≤ knd. We now try to establish this by induction using (5.3), assuming

that the solution holds for the smaller value n/2:

T(n) ≤ T(n/2) + cn

≤ k

(

n

2

)d

+ cn

= k

2d
nd + cn.

If we now simply choose d = 1 and k = 2c, we have

T(n) ≤ k

2
n + cn = (

k

2
+ c)n = kn,

which completes the induction.

The Effect of the Parameter q. It is worth reflecting briefly on the role of the

parameter q in the class of recurrences T(n) ≤ qT(n/2) + O(n) defined by (5.3).

When q = 1, the resulting running time is linear; when q = 2, it’s O(n log n);

and when q > 2, it’s a polynomial bound with an exponent larger than 1 that

grows with q. The reason for this range of different running times lies in where

220 Chapter 5 Divide and Conquer

most of the work is spent in the recursion: when q = 1, the total running time

is dominated by the top level, whereas when q > 2 it’s dominated by the work

done on constant-size subproblems at the bottom of the recursion. Viewed this

way, we can appreciate that the recurrence for q = 2 really represents a “knife-

edge”—the amount of work done at each level is exactly the same, which is

what yields the O(n log n) running time.

A Related Recurrence: T(n) ≤ 2T(n/2) + O(n2)

We conclude our discussion with one final recurrence relation; it is illustrative

both as another application of a decaying geometric sum and as an interesting

contrast with the recurrence (5.1) that characterized Mergesort. Moreover, we

will see a close variant of it in Chapter 6, when we analyze a divide-and-

conquer algorithm for solving the Sequence Alignment Problem using a small

amount of working memory.

The recurrence is based on the following divide-and-conquer structure.

Divide the input into two pieces of equal size; solve the two subproblems

on these pieces separately by recursion; and then combine the two results

into an overall solution, spending quadratic time for the initial division

and final recombining.

For our purposes here, we note that this style of algorithm has a running time

T(n) that satisfies the following recurrence.

(5.6) For some constant c,

T(n) ≤ 2T(n/2) + cn2

when n > 2, and

T(2) ≤ c.

One’s first reaction is to guess that the solution will be T(n) = O(n2 log n),

since it looks almost identical to (5.1) except that the amount of work per level

is larger by a factor equal to the input size. In fact, this upper bound is correct

(it would need a more careful argument than what’s in the previous sentence),

but it will turn out that we can also show a stronger upper bound.

We’ll do this by unrolling the recurrence, following the standard template

for doing this.

. Analyzing the first few levels: At the first level of recursion, we have a

single problem of size n, which takes time at most cn2 plus the time spent

in all subsequent recursive calls. At the next level, we have two problems,

each of size n/2. Each of these takes time at most c(n/2)2 = cn2/4, for a

5.3 Counting Inversions 221

total of at most cn2/2, again plus the time in subsequent recursive calls.

At the third level, we have four problems each of size n/4, each taking

time at most c(n/4)2 = cn2/16, for a total of at most cn2/4. Already we see

that something is different from our solution to the analogous recurrence

(5.1); whereas the total amount of work per level remained the same in

that case, here it’s decreasing.

. Identifying a pattern: At an arbitrary level j of the recursion, there are 2j

subproblems, each of size n/2j, and hence the total work at this level is

bounded by 2jc(n
2j)

2 = cn2/2j.

. Summing over all levels of recursion: Having gotten this far in the calcu-

lation, we’ve arrived at almost exactly the same sum that we had for the

case q = 1 in the previous recurrence. We have

T(n) ≤
log2 n−1

∑

j=0

cn2

2j
= cn2

log2 n−1
∑

j=0

(

1

2j

)

≤ 2cn2 = O(n2),

where the second inequality follows from the fact that we have a con-

vergent geometric sum.

In retrospect, our initial guess of T(n) = O(n2 log n), based on the analogy

to (5.1), was an overestimate because of how quickly n2 decreases as we

replace it with (n
2)2, (n

4)2, (n
8)2, and so forth in the unrolling of the recurrence.

This means that we get a geometric sum, rather than one that grows by a fixed

amount over all n levels (as in the solution to (5.1)).

5.3 Counting Inversions
We’ve spent some time discussing approaches to solving a number of common

recurrences. The remainder of the chapter will illustrate the application of

divide-and-conquer to problems from a number of different domains; we will

use what we’ve seen in the previous sections to bound the running times

of these algorithms. We begin by showing how a variant of the Mergesort

technique can be used to solve a problem that is not directly related to sorting

numbers.

The Problem

We will consider a problem that arises in the analysis of rankings, which

are becoming important to a number of current applications. For example, a

number of sites on the Web make use of a technique known as collaborative

filtering, in which they try to match your preferences (for books, movies,

restaurants) with those of other people out on the Internet. Once the Web site

has identified people with “similar” tastes to yours—based on a comparison

222 Chapter 5 Divide and Conquer

2 4 1 3 5

1 2 3 4 5

Figure 5.4 Counting the

number of inversions in the

sequence 2, 4, 1, 3, 5. Each

crossing pair of line segments

corresponds to one pair that

is in the opposite order in

the input list and the ascend-

ing list—in other words, an

inversion.

of how you and they rate various things—it can recommend new things that

these other people have liked. Another application arises in meta-search tools

on the Web, which execute the same query on many different search engines

and then try to synthesize the results by looking for similarities and differences

among the various rankings that the search engines return.

A core issue in applications like this is the problem of comparing two

rankings. You rank a set of n movies, and then a collaborative filtering system

consults its database to look for other people who had “similar” rankings. But

what’s a good way to measure, numerically, how similar two people’s rankings

are? Clearly an identical ranking is very similar, and a completely reversed

ranking is very different; we want something that interpolates through the

middle region.

Let’s consider comparing your ranking and a stranger’s ranking of the

same set of n movies. A natural method would be to label the movies from

1 to n according to your ranking, then order these labels according to the

stranger’s ranking, and see how many pairs are “out of order.” More concretely,

we will consider the following problem. We are given a sequence of n numbers

a1, . . . , an; we will assume that all the numbers are distinct. We want to define

a measure that tells us how far this list is from being in ascending order; the

value of the measure should be 0 if a1 < a2 < . . . < an, and should increase as

the numbers become more scrambled.

A natural way to quantify this notion is by counting the number of

inversions. We say that two indices i < j form an inversion if ai > aj, that is,

if the two elements ai and aj are “out of order.” We will seek to determine the

number of inversions in the sequence a1, . . . , an.

Just to pin down this definition, consider an example in which the se-

quence is 2, 4, 1, 3, 5. There are three inversions in this sequence: (2, 1), (4, 1),

and (4, 3). There is also an appealing geometric way to visualize the inver-

sions, pictured in Figure 5.4: we draw the sequence of input numbers in the

order they’re provided, and below that in ascending order. We then draw a

line segment between each number in the top list and its copy in the lower

list. Each crossing pair of line segments corresponds to one pair that is in the

opposite order in the two lists—in other words, an inversion.

Note how the number of inversions is a measure that smoothly interpolates

between complete agreement (when the sequence is in ascending order, then

there are no inversions) and complete disagreement (if the sequence is in

descending order, then every pair forms an inversion, and so there are
(n

2

)

of

them).

5.3 Counting Inversions 223

Designing and Analyzing the Algorithm

What is the simplest algorithm to count inversions? Clearly, we could look

at every pair of numbers (ai, aj) and determine whether they constitute an

inversion; this would take O(n2) time.

We now show how to count the number of inversions much more quickly,

in O(n log n) time. Note that since there can be a quadratic number of inver-

sions, such an algorithm must be able to compute the total number without

ever looking at each inversion individually. The basic idea is to follow the

strategy (†) defined in Section 5.1. We set m = ⌈n/2⌉ and divide the list into

the two pieces a1, . . . , am and am+1, . . . , an. We first count the number of

inversions in each of these two halves separately. Then we count the number

of inversions (ai, aj), where the two numbers belong to different halves; the

trick is that we must do this part in O(n) time, if we want to apply (5.2). Note

that these first-half/second-half inversions have a particularly nice form: they

are precisely the pairs (ai, aj), where ai is in the first half, aj is in the second

half, and ai > aj.

To help with counting the number of inversions between the two halves,

we will make the algorithm recursively sort the numbers in the two halves as

well. Having the recursive step do a bit more work (sorting as well as counting

inversions) will make the “combining” portion of the algorithm easier.

So the crucial routine in this process is Merge-and-Count. Suppose we

have recursively sorted the first and second halves of the list and counted the

inversions in each. We now have two sorted lists A and B, containing the first

and second halves, respectively. We want to produce a single sorted list C from

their union, while also counting the number of pairs (a, b) with a ∈ A, b ∈ B,

and a > b. By our previous discussion, this is precisely what we will need

for the “combining” step that computes the number of first-half/second-half

inversions.

This is closely related to the simpler problem we discussed in Chapter 2,

which formed the corresponding “combining” step for Mergesort: there we had

two sorted lists A and B, and we wanted to merge them into a single sorted list

in O(n) time. The difference here is that we want to do something extra: not

only should we produce a single sorted list from A and B, but we should also

count the number of “inverted pairs” (a, b) where a ∈ A, b ∈ B, and a > b.

It turns out that we will be able to do this in very much the same style

that we used for merging. Our Merge-and-Count routine will walk through

the sorted lists A and B, removing elements from the front and appending

them to the sorted list C. In a given step, we have a Current pointer into each

list, showing our current position. Suppose that these pointers are currently

224 Chapter 5 Divide and Conquer

Elements inverted

with bj < ai

Merged result

bj///

ai

B

A//////

Figure 5.5 Merging two sorted lists while also counting the number of inversions

between them.

at elements ai and bj. In one step, we compare the elements ai and bj being

pointed to in each list, remove the smaller one from its list, and append it to

the end of list C.

This takes care of merging. How do we also count the number of inver-

sions? Because A and B are sorted, it is actually very easy to keep track of the

number of inversions we encounter. Every time the element ai is appended to

C, no new inversions are encountered, since ai is smaller than everything left

in list B, and it comes before all of them. On the other hand, if bj is appended

to list C, then it is smaller than all the remaining items in A, and it comes

after all of them, so we increase our count of the number of inversions by the

number of elements remaining in A. This is the crucial idea: in constant time,

we have accounted for a potentially large number of inversions. See Figure 5.5

for an illustration of this process.

To summarize, we have the following algorithm.

Merge-and-Count(A,B)

Maintain a Current pointer into each list, initialized to

point to the front elements

Maintain a variable Count for the number of inversions,

initialized to 0

While both lists are nonempty:

Let ai and bj be the elements pointed to by the Current pointer

Append the smaller of these two to the output list

If bj is the smaller element then

Increment Count by the number of elements remaining in A

Endif

Advance the Current pointer in the list from which the

smaller element was selected.

EndWhile

5.4 Finding the Closest Pair of Points 225

Once one list is empty, append the remainder of the other list

to the output

Return Count and the merged list

The running time of Merge-and-Count can be bounded by the analogue

of the argument we used for the original merging algorithm at the heart of

Mergesort: each iteration of the While loop takes constant time, and in each

iteration we add some element to the output that will never be seen again.

Thus the number of iterations can be at most the sum of the initial lengths of

A and B, and so the total running time is O(n).

We use this Merge-and-Count routine in a recursive procedure that

simultaneously sorts and counts the number of inversions in a list L.

Sort-and-Count(L)

If the list has one element then

there are no inversions

Else

Divide the list into two halves:

A contains the first ⌈n/2⌉ elements

B contains the remaining ⌊n/2⌋ elements
(rA, A) = Sort-and-Count(A)

(rB , B) = Sort-and-Count(B)

(r , L) = Merge-and-Count(A, B)

Endif

Return r = rA + rB + r, and the sorted list L

Since our Merge-and-Count procedure takes O(n) time, the running time

T(n) of the full Sort-and-Count procedure satisfies the recurrence (5.1). By

(5.2), we have

(5.7) The Sort-and-Count algorithm correctly sorts the input list and counts

the number of inversions; it runs in O(n log n) time for a list with n elements.

5.4 Finding the Closest Pair of Points
We now describe another problem that can be solved by an algorithm in the

style we’ve been discussing; but finding the right way to “merge” the solutions

to the two subproblems it generates requires quite a bit of ingenuity.

226 Chapter 5 Divide and Conquer

The Problem

The problem we consider is very simple to state: Given n points in the plane,

find the pair that is closest together.

The problem was considered by M. I. Shamos and D. Hoey in the early

1970s, as part of their project to work out efficient algorithms for basic com-

putational primitives in geometry. These algorithms formed the foundations

of the then-fledgling field of computational geometry, and they have found

their way into areas such as graphics, computer vision, geographic informa-

tion systems, and molecular modeling. And although the closest-pair problem

is one of the most natural algorithmic problems in geometry, it is surprisingly

hard to find an efficient algorithm for it. It is immediately clear that there is an

O(n2) solution—compute the distance between each pair of points and take

the minimum—and so Shamos and Hoey asked whether an algorithm asymp-

totically faster than quadratic could be found. It took quite a long time before

they resolved this question, and the O(n log n) algorithm we give below is

essentially the one they discovered. In fact, when we return to this problem in

Chapter 13, we will see that it is possible to further improve the running time

to O(n) using randomization.

Designing the Algorithm

We begin with a bit of notation. Let us denote the set of points by P =
{p1, . . . , pn}, where pi has coordinates (xi, yi); and for two points pi, pj ∈ P,

we use d(pi, pj) to denote the standard Euclidean distance between them. Our

goal is to find a pair of points pi, pj that minimizes d(pi, pj).

We will assume that no two points in P have the same x-coordinate or

the same y-coordinate. This makes the discussion cleaner; and it’s easy to

eliminate this assumption either by initially applying a rotation to the points

that makes it true, or by slightly extending the algorithm we develop here.

It’s instructive to consider the one-dimensional version of this problem for

a minute, since it is much simpler and the contrasts are revealing. How would

we find the closest pair of points on a line? We’d first sort them, in O(n log n)

time, and then we’d walk through the sorted list, computing the distance from

each point to the one that comes after it. It is easy to see that one of these

distances must be the minimum one.

In two dimensions, we could try sorting the points by their y-coordinate

(or x-coordinate) and hoping that the two closest points were near one another

in the order of this sorted list. But it is easy to construct examples in which they

are very far apart, preventing us from adapting our one-dimensional approach.

Instead, our plan will be to apply the style of divide and conquer used

in Mergesort: we find the closest pair among the points in the “left half” of

5.4 Finding the Closest Pair of Points 227

P and the closest pair among the points in the “right half” of P; and then we

use this information to get the overall solution in linear time. If we develop an

algorithm with this structure, then the solution of our basic recurrence from

(5.1) will give us an O(n log n) running time.

It is the last, “combining” phase of the algorithm that’s tricky: the distances

that have not been considered by either of our recursive calls are precisely those

that occur between a point in the left half and a point in the right half; there

are �(n2) such distances, yet we need to find the smallest one in O(n) time

after the recursive calls return. If we can do this, our solution will be complete:

it will be the smallest of the values computed in the recursive calls and this

minimum “left-to-right” distance.

Setting Up the Recursion Let’s get a few easy things out of the way first.

It will be very useful if every recursive call, on a set P′ ⊆ P, begins with two

lists: a list P′
x in which all the points in P′ have been sorted by increasing x-

coordinate, and a list P′
y in which all the points in P′ have been sorted by

increasing y-coordinate. We can ensure that this remains true throughout the

algorithm as follows.

First, before any of the recursion begins, we sort all the points in P by x-

coordinate and again by y-coordinate, producing lists Px and Py. Attached to

each entry in each list is a record of the position of that point in both lists.

The first level of recursion will work as follows, with all further levels

working in a completely analogous way. We define Q to be the set of points

in the first ⌈n/2⌉ positions of the list Px (the “left half”) and R to be the set of

points in the final ⌊n/2⌋ positions of the list Px (the “right half”). See Figure 5.6.

By a single pass through each of Px and Py, in O(n) time, we can create the

δ

Q RLine L

Figure 5.6 The first level of recursion: The point set P is divided evenly into Q and R by

the line L, and the closest pair is found on each side recursively.

228 Chapter 5 Divide and Conquer

following four lists: Qx, consisting of the points in Q sorted by increasing x-

coordinate; Qy, consisting of the points in Q sorted by increasing y-coordinate;

and analogous lists Rx and Ry. For each entry of each of these lists, as before,

we record the position of the point in both lists it belongs to.

We now recursively determine a closest pair of points in Q (with access

to the lists Qx and Qy). Suppose that q∗
0 and q∗

1 are (correctly) returned as a

closest pair of points in Q. Similarly, we determine a closest pair of points in

R, obtaining r∗
0 and r∗

1 .

Combining the Solutions The general machinery of divide and conquer has

gotten us this far, without our really having delved into the structure of the

closest-pair problem. But it still leaves us with the problem that we saw

looming originally: How do we use the solutions to the two subproblems as

part of a linear-time “combining” operation?

Let δ be the minimum of d(q∗
0,q∗

1) and d(r∗
0 ,r∗

1). The real question is: Are

there points q ∈ Q and r ∈ R for which d(q, r) < δ? If not, then we have already

found the closest pair in one of our recursive calls. But if there are, then the

closest such q and r form the closest pair in P.

Let x∗ denote the x-coordinate of the rightmost point in Q, and let L denote

the vertical line described by the equation x = x∗. This line L “separates” Q

from R. Here is a simple fact.

(5.8) If there exists q ∈ Q and r ∈ R for which d(q, r) < δ, then each of q and

r lies within a distance δ of L.

Proof. Suppose such q and r exist; we write q = (qx, qy) and r = (rx, ry). By

the definition of x∗, we know that qx ≤ x∗ ≤ rx. Then we have

x∗ − qx ≤ rx − qx ≤ d(q, r) < δ

and

rx − x∗ ≤ rx − qx ≤ d(q, r) < δ,

so each of q and r has an x-coordinate within δ of x∗ and hence lies within

distance δ of the line L.

So if we want to find a close q and r, we can restrict our search to the

narrow band consisting only of points in P within δ of L. Let S ⊆ P denote this

set, and let Sy denote the list consisting of the points in S sorted by increasing

y-coordinate. By a single pass through the list Py, we can construct Sy in O(n)

time.

We can restate (5.8) as follows, in terms of the set S.

5.4 Finding the Closest Pair of Points 229

Boxes

δ/2

δ/2

Line L

Each box can

contain at most

one input point.

δδ

Figure 5.7 The portion of the

plane close to the dividing

line L, as analyzed in the

proof of (5.10).

(5.9) There exist q ∈ Q and r ∈ R for which d(q, r) < δ if and only if there

exist s, s′ ∈ S for which d(s, s′) < δ.

It’s worth noticing at this point that S might in fact be the whole set P, in

which case (5.8) and (5.9) really seem to buy us nothing. But this is actually

far from true, as the following amazing fact shows.

(5.10) If s, s′ ∈ S have the property that d(s, s′) < δ, then s and s′ are within

15 positions of each other in the sorted list Sy.

Proof. Consider the subset Z of the plane consisting of all points within

distance δ of L. We partition Z into boxes: squares with horizontal and vertical

sides of length δ/2. One row of Z will consist of four boxes whose horizontal

sides have the same y-coordinates. This collection of boxes is depicted in

Figure 5.7.

Suppose two points of S lie in the same box. Since all points in this box lie

on the same side of L, these two points either both belong to Q or both belong

to R. But any two points in the same box are within distance δ ·
√

2/2 < δ,

which contradicts our definition of δ as the minimum distance between any

pair of points in Q or in R. Thus each box contains at most one point of S.

Now suppose that s, s′ ∈ S have the property that d(s, s′) < δ, and that they

are at least 16 positions apart in Sy. Assume without loss of generality that s

has the smaller y-coordinate. Then, since there can be at most one point per

box, there are at least three rows of Z lying between s and s′. But any two

points in Z separated by at least three rows must be a distance of at least 3δ/2

apart—a contradiction.

We note that the value of 15 can be reduced; but for our purposes at the

moment, the important thing is that it is an absolute constant.

In view of (5.10), we can conclude the algorithm as follows. We make one

pass through Sy, and for each s ∈ Sy, we compute its distance to each of the

next 15 points in Sy. Statement (5.10) implies that in doing so, we will have

computed the distance of each pair of points in S (if any) that are at distance

less than δ from each other. So having done this, we can compare the smallest

such distance to δ, and we can report one of two things: (i) the closest pair

of points in S, if their distance is less than δ; or (ii) the (correct) conclusion

that no pairs of points in S are within δ of each other. In case (i), this pair is

the closest pair in P; in case (ii), the closest pair found by our recursive calls

is the closest pair in P.

Note the resemblance between this procedure and the algorithm we re-

jected at the very beginning, which tried to make one pass through P in order

230 Chapter 5 Divide and Conquer

of y-coordinate. The reason such an approach works now is due to the ex-

tra knowledge (the value of δ) we’ve gained from the recursive calls, and the

special structure of the set S.

This concludes the description of the “combining” part of the algorithm,

since by (5.9) we have now determined whether the minimum distance

between a point in Q and a point in R is less than δ, and if so, we have

found the closest such pair.

A complete description of the algorithm and its proof of correctness are

implicitly contained in the discussion so far, but for the sake of concreteness,

we now summarize both.

Summary of the Algorithm A high-level description of the algorithm is the

following, using the notation we have developed above.

Closest-Pair(P)

Construct Px and Py (O(n log n) time)

(p∗
0, p∗

1) = Closest-Pair-Rec(Px,Py)

Closest-Pair-Rec(Px, Py)

If |P| ≤ 3 then

find closest pair by measuring all pairwise distances

Endif

Construct Qx, Qy, Rx, Ry (O(n) time)

(q∗
0,q

∗
1) = Closest-Pair-Rec(Qx, Qy)

(r∗
0,r

∗
1) = Closest-Pair-Rec(Rx, Ry)

δ = min(d(q∗
0,q

∗
1), d(r∗

0,r
∗
1))

x∗ = maximum x-coordinate of a point in set Q

L = {(x,y) : x = x∗}
S = points in P within distance δ of L.

Construct Sy (O(n) time)

For each point s ∈ Sy, compute distance from s

to each of next 15 points in Sy

Let s, s′ be pair achieving minimum of these distances

(O(n) time)

If d(s,s′) < δ then

Return (s,s′)

Else if d(q∗
0,q

∗
1) < d(r∗

0,r
∗
1) then

Return (q∗
0,q

∗
1)

5.5 Integer Multiplication 231

Else

Return (r∗
0,r

∗
1)

Endif

Analyzing the Algorithm

We first prove that the algorithm produces a correct answer, using the facts

we’ve established in the process of designing it.

(5.11) The algorithm correctly outputs a closest pair of points in P.

Proof. As we’ve noted, all the components of the proof have already been

worked out, so here we just summarize how they fit together.

We prove the correctness by induction on the size of P, the case of |P| ≤ 3

being clear. For a given P, the closest pair in the recursive calls is computed

correctly by induction. By (5.10) and (5.9), the remainder of the algorithm

correctly determines whether any pair of points in S is at distance less than

δ, and if so returns the closest such pair. Now the closest pair in P either has

both elements in one of Q or R, or it has one element in each. In the former

case, the closest pair is correctly found by the recursive call; in the latter case,

this pair is at distance less than δ, and it is correctly found by the remainder

of the algorithm.

We now bound the running time as well, using (5.2).

(5.12) The running time of the algorithm is O(n log n).

Proof. The initial sorting of P by x- and y-coordinate takes time O(n log n).

The running time of the remainder of the algorithm satisfies the recurrence

(5.1), and hence is O(n log n) by (5.2).

5.5 Integer Multiplication
We now discuss a different application of divide and conquer, in which the

“default” quadratic algorithm is improved by means of a different recurrence.

The analysis of the faster algorithm will exploit one of the recurrences con-

sidered in Section 5.2, in which more than two recursive calls are spawned at

each level.

The Problem

The problem we consider is an extremely basic one: the multiplication of two

integers. In a sense, this problem is so basic that one may not initially think of it

232 Chapter 5 Divide and Conquer

(a)

12

× 13

36

12

156

(b)

1100

× 1101

1100

0000

1100

1100

10011100

Figure 5.8 The elementary-school algorithm for multiplying two integers, in (a) decimal

and (b) binary representation.

even as an algorithmic question. But, in fact, elementary schoolers are taught a

concrete (and quite efficient) algorithm to multiply two n-digit numbers x and

y. You first compute a “partial product” by multiplying each digit of y separately

by x, and then you add up all the partial products. (Figure 5.8 should help you

recall this algorithm. In elementary school we always see this done in base-

10, but it works exactly the same way in base-2 as well.) Counting a single

operation on a pair of bits as one primitive step in this computation, it takes

O(n) time to compute each partial product, and O(n) time to combine it in

with the running sum of all partial products so far. Since there are n partial

products, this is a total running time of O(n2).

If you haven’t thought about this much since elementary school, there’s

something initially striking about the prospect of improving on this algorithm.

Aren’t all those partial products “necessary” in some way? But, in fact, it

is possible to improve on O(n2) time using a different, recursive way of

performing the multiplication.

Designing the Algorithm

The improved algorithm is based on a more clever way to break up the product

into partial sums. Let’s assume we’re in base-2 (it doesn’t really matter), and

start by writing x as x1 · 2n/2 + x0. In other words, x1 corresponds to the “high-

order” n/2 bits, and x0 corresponds to the “low-order” n/2 bits. Similarly, we

write y = y1 · 2n/2 + y0. Thus, we have

xy = (x1 · 2n/2 + x0)(y1 · 2n/2 + y0)

= x1y1 · 2n + (x1y0 + x0y1) · 2n/2 + x0y0. (5.1)

Equation (5.1) reduces the problem of solving a single n-bit instance

(multiplying the two n-bit numbers x and y) to the problem of solving four n/2-

bit instances (computing the products x1y1, x1y0, x0y1, and x0y0). So we have

a first candidate for a divide-and-conquer solution: recursively compute the

results for these four n/2-bit instances, and then combine them using Equation

5.5 Integer Multiplication 233

(5.1). The combining of the solution requires a constant number of additions

of O(n)-bit numbers, so it takes time O(n); thus, the running time T(n) is

bounded by the recurrence

T(n) ≤ 4T(n/2) + cn

for a constant c. Is this good enough to give us a subquadratic running time?

We can work out the answer by observing that this is just the case q = 4 of

the class of recurrences in (5.3). As we saw earlier in the chapter, the solution

to this is T(n) ≤ O(nlog2 q) = O(n2).

So, in fact, our divide-and-conquer algorithm with four-way branching

was just a complicated way to get back to quadratic time! If we want to do

better using a strategy that reduces the problem to instances on n/2 bits, we

should try to get away with only three recursive calls. This will lead to the case

q = 3 of (5.3), which we saw had the solution T(n) ≤ O(nlog2 q) = O(n1.59).

Recall that our goal is to compute the expression x1y1 · 2n + (x1y0 + x0y1) ·
2n/2 + x0y0 in Equation (5.1). It turns out there is a simple trick that lets us

determine all of the terms in this expression using just three recursive calls. The

trick is to consider the result of the single multiplication (x1 + x0)(y1 + y0) =
x1y1 + x1y0 + x0y1 + x0y0. This has the four products above added together, at

the cost of a single recursive multiplication. If we now also determine x1y1 and

x0y0 by recursion, then we get the outermost terms explicitly, and we get the

middle term by subtracting x1y1 and x0y0 away from (x1 + x0)(y1 + y0).

Thus, in full, our algorithm is

Recursive-Multiply(x,y):

Write x = x1 · 2n/2 + x0

y = y1 · 2n/2 + y0

Compute x1 + x0 and y1 + y0

p = Recursive-Multiply(x1 + x0, y1 + y0)

x1y1 = Recursive-Multiply(x1, y1)

x0y0 = Recursive-Multiply(x0, y0)

Return x1y1 · 2n + (p − x1y1 − x0y0) · 2n/2 + x0y0

Analyzing the Algorithm

We can determine the running time of this algorithm as follows. Given two n-

bit numbers, it performs a constant number of additions on O(n)-bit numbers,

in addition to the three recursive calls. Ignoring for now the issue that x1 + x0

and y1 + y0 may have n/2 + 1 bits (rather than just n/2), which turns out not

to affect the asymptotic results, each of these recursive calls is on an instance

of size n/2. Thus, in place of our four-way branching recursion, we now have

234 Chapter 5 Divide and Conquer

a three-way branching one, with a running time that satisfies

T(n) ≤ 3T(n/2) + cn

for a constant c.

This is the case q = 3 of (5.3) that we were aiming for. Using the solution

to that recurrence from earlier in the chapter, we have

(5.13) The running time of Recursive-Multiply on two n-bit factors is

O(nlog2 3) = O(n1.59).

5.6 Convolutions and the Fast Fourier Transform
As a final topic in this chapter, we show how our basic recurrence from (5.1)

is used in the design of the Fast Fourier Transform, an algorithm with a wide

range of applications.

The Problem

Given two vectors a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1), there are

a number of common ways of combining them. For example, one can compute

the sum, producing the vector a + b = (a0 + b0, a1 + b1, . . . , an−1 + bn−1);

or one can compute the inner product, producing the real number a · b =
a0b0 + a1b1 + . . . + an−1bn−1. (For reasons that will emerge shortly, it is useful

to write vectors in this section with coordinates that are indexed starting from

0 rather than 1.)

A means of combining vectors that is very important in applications, even

if it doesn’t always show up in introductory linear algebra courses, is the

convolution a ∗ b. The convolution of two vectors of length n (as a and b are)

is a vector with 2n − 1 coordinates, where coordinate k is equal to

∑

(i, j):i+j=k
i, j<n

aibj.

In other words,

a ∗ b = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, . . . ,

an−2bn−1 + an−1bn−2, an−1bn−1).

This definition is a bit hard to absorb when you first see it. Another way to

think about the convolution is to picture an n × n table whose (i, j) entry is

aibj, like this,

5.6 Convolutions and the Fast Fourier Transform 235

a0b0 a0b1 . . . a0bn−2 a0bn−1

a1b0 a1b1 . . . a1bn−2 a1bn−1

a2b0 a2b1 . . . a2bn−2 a2bn−1

.

an−1b0 an−1b1 . . . an−1bn−2 an−1bn−1

and then to compute the coordinates in the convolution vector by summing

along the diagonals.

It’s worth mentioning that, unlike the vector sum and inner product,

the convolution can be easily generalized to vectors of different lengths,

a = (a0, a1, . . . , am−1) and b = (b0, b1, . . . , bn−1). In this more general case,

we define a ∗ b to be a vector with m + n − 1 coordinates, where coordinate

k is equal to

∑

(i, j):i+j=k
i<m, j<n

aibj.

We can picture this using the table of products aibj as before; the table is now

rectangular, but we still compute coordinates by summing along the diagonals.

(From here on, we’ll drop explicit mention of the condition i < m, j < n in the

summations for convolutions, since it will be clear from the context that we

only compute the sum over terms that are defined.)

It’s not just the definition of a convolution that is a bit hard to absorb at

first; the motivation for the definition can also initially be a bit elusive. What

are the circumstances where you’d want to compute the convolution of two

vectors? In fact, the convolution comes up in a surprisingly wide variety of

different contexts. To illustrate this, we mention the following examples here.

. A first example (which also proves that the convolution is something that

we all saw implicitly in high school) is polynomial multiplication. Any

polynomial A(x) = a0 + a1x + a2x
2 + . . . am−1x

m−1 can be represented

just as naturally using its vector of coefficients, a = (a0, a1, . . . , am−1).

Now, given two polynomials A(x) = a0 + a1x + a2x
2 + . . . am−1x

m−1 and

B(x) = b0 + b1x + b2x
2 + . . . bn−1x

n−1, consider the polynomial C(x) =
A(x)B(x) that is equal to their product. In this polynomial C(x), the

coefficient on the xk term is equal to

ck =
∑

(i, j):i+j=k

aibj.

In other words, the coefficient vector c of C(x) is the convolution of the

coefficient vectors of A(x) and B(x).

. Arguably the most important application of convolutions in practice is

for signal processing. This is a topic that could fill an entire course, so

236 Chapter 5 Divide and Conquer

we’ll just give a simple example here to suggest one way in which the

convolution arises.

Suppose we have a vector a = (a0, a1, . . . , am−1) which represents

a sequence of measurements, such as a temperature or a stock price,

sampled at m consecutive points in time. Sequences like this are often

very noisy due to measurement error or random fluctuations, and so a

common operation is to “smooth” the measurements by averaging each

value ai with a weighted sum of its neighbors within k steps to the left

and right in the sequence, the weights decaying quickly as one moves

away from ai. For example, in Gaussian smoothing, one replaces ai with

a′
i = 1

Z

i+k
∑

j=i−k

aje
−(j−i)2,

for some “width” parameter k, and with Z chosen simply to normalize

the weights in the average to add up to 1. (There are some issues with

boundary conditions—what do we do when i − k < 0 or i + k > m?—but

we could deal with these, for example, by discarding the first and last k

entries from the smoothed signal, or by scaling them differently to make

up for the missing terms.)

To see the connection with the convolution operation, we picture

this smoothing operation as follows. We first define a “mask”

w = (w−k, w−(k−1), . . . , w−1, w0, w1, . . . , wk−1, wk)

consisting of the weights we want to use for averaging each point with

its neighbors. (For example, w = 1
Z (e−k2

, e−(k−1)2, . . . , e−1, 1, e−1, . . . ,

e−(k−1)2, e−k2
) in the Gaussian case above.) We then iteratively position

this mask so it is centered at each possible point in the sequence a; and

for each positioning, we compute the weighted average. In other words,

we replace ai with a′
i =

∑k
s=−k wsai+s.

This last expression is essentially a convolution; we just have to

warp the notation a bit so that this becomes clear. Let’s define b =
(b0, b1, . . . , b2k) by setting bℓ = wk−ℓ. Then it’s not hard to check that

with this definition we have the smoothed value

a′
i =

∑

(j ,ℓ):j+ℓ=i+k

ajbℓ.

In other words, the smoothed sequence is just the convolution of the

original signal and the reverse of the mask (with some meaningless

coordinates at the beginning and end).

5.6 Convolutions and the Fast Fourier Transform 237

. We mention one final application: the problem of combining histograms.

Suppose we’re studying a population of people, and we have the follow-

ing two histograms: One shows the annual income of all the men in the

population, and one shows the annual income of all the women. We’d

now like to produce a new histogram, showing for each k the number of

pairs (M , W) for which man M and woman W have a combined income

of k.

This is precisely a convolution. We can write the first histogram as a

vector a = (a0, . . . , am−1), to indicate that there are ai men with annual

income equal to i. We can similarly write the second histogram as a

vector b = (b0, . . . , bn−1). Now, let ck denote the number of pairs (m, w)

with combined income k; this is the number of ways of choosing a man

with income ai and a woman with income bj, for any pair (i, j) where

i + j = k. In other words,

ck =
∑

(i, j):i+j=k

aibj.

so the combined histogram c = (c0, . . . , cm+n−2) is simply the convolu-

tion of a and b.

(Using terminology from probability that we will develop in Chap-

ter 13, one can view this example as showing how convolution is the

underlying means for computing the distribution of the sum of two in-

dependent random variables.)

Computing the Convolution Having now motivated the notion of convolu-

tion, let’s discuss the problem of computing it efficiently. For simplicity, we

will consider the case of equal length vectors (i.e., m = n), although everything

we say carries over directly to the case of vectors of unequal lengths.

Computing the convolution is a more subtle question than it may first

appear. The definition of convolution, after all, gives us a perfectly valid way

to compute it: for each k, we just calculate the sum

∑

(i, j):i+j=k

aibj

and use this as the value of the kth coordinate. The trouble is that this direct way

of computing the convolution involves calculating the product aibj for every

pair (i, j) (in the process of distributing over the sums in the different terms)

and this is �(n2) arithmetic operations. Spending O(n2) time on computing

the convolution seems natural, as the definition involves O(n2) multiplications

aibj. However, it’s not inherently clear that we have to spend quadratic time to

compute a convolution, since the input and output both only have size O(n).

238 Chapter 5 Divide and Conquer

Could one design an algorithm that bypasses the quadratic-size definition of

convolution and computes it in some smarter way?

In fact, quite surprisingly, this is possible. We now describe a method

that computes the convolution of two vectors using only O(n log n) arithmetic

operations. The crux of this method is a powerful technique known as the Fast

Fourier Transform (FFT). The FFT has a wide range of further applications in

analyzing sequences of numerical values; computing convolutions quickly,

which we focus on here, is just one of these applications.

Designing and Analyzing the Algorithm

To break through the quadratic time barrier for convolutions, we are going

to exploit the connection between the convolution and the multiplication of

two polynomials, as illustrated in the first example discussed previously. But

rather than use convolution as a primitive in polynomial multiplication, we

are going to exploit this connection in the opposite direction.

Suppose we are given the vectors a = (a0, a1, . . . , an−1) and b = (b0,

b1, . . . , bn−1). We will view them as the polynomials A(x) = a0 + a1x + a2x
2 +

. . . an−1x
n−1 and B(x) = b0 + b1x + b2x

2 + . . . bn−1x
n−1, and we’ll seek to com-

pute their product C(x) = A(x)B(x) in O(n log n) time. If c = (c0, c1, . . . , c2n−2)

is the vector of coefficients of C, then we recall from our earlier discussion

that c is exactly the convolution a ∗ b, and so we can then read off the desired

answer directly from the coefficients of C(x).

Now, rather than multiplying A and B symbolically, we can treat them as

functions of the variable x and multiply them as follows.

(i) First we choose 2n values x1, x2, . . . , x2n and evaluate A(xj) and B(xj) for

each of j = 1, 2, . . . , 2n.

(ii) We can now compute C(xj) for each j very easily: C(xj) is simply the

product of the two numbers A(xj) and B(xj).

(iii) Finally, we have to recover C from its values on x1, x2, . . . , x2n. Here we

take advantage of a fundamental fact about polynomials: any polynomial

of degree d can be reconstructed from its values on any set of d + 1 or

more points. This is known as polynomial interpolation, and we’ll discuss

the mechanics of performing interpolation in more detail later. For the

moment, we simply observe that since A and B each have degree at

most n − 1, their product C has degree at most 2n − 2, and so it can be

reconstructed from the values C(x1), C(x2), . . . , C(x2n) that we computed

in step (ii).

This approach to multiplying polynomials has some promising aspects

and some problematic ones. First, the good news: step (ii) requires only

5.6 Convolutions and the Fast Fourier Transform 239

O(n) arithmetic operations, since it simply involves the multiplication of O(n)

numbers. But the situation doesn’t look as hopeful with steps (i) and (iii). In

particular, evaluating the polynomials A and B on a single value takes �(n)

operations, and our plan calls for performing 2n such evaluations. This seems

to bring us back to quadratic time right away.

The key idea that will make this all work is to find a set of 2n values

x1, x2, . . . , x2n that are intimately related in some way, such that the work in

evaluating A and B on all of them can be shared across different evaluations. A

set for which this will turn out to work very well is the complex roots of unity.

The Complex Roots of Unity At this point, we’re going to need to recall a

few facts about complex numbers and their role as solutions to polynomial

equations.

Recall that complex numbers can be viewed as lying in the “complex

plane,” with axes representing their real and imaginary parts. We can write

a complex number using polar coordinates with respect to this plane as reθ i,

where eπ i = −1 (and e2π i = 1). Now, for a positive integer k, the polynomial

equation xk = 1 has k distinct complex roots, and it is easy to identify them.

Each of the complex numbers ωj ,k = e2π ji/k (for j = 0, 1, 2, . . . , k − 1) satisfies

the equation, since

(e2π ji/k)k = e2π ji = (e2π i)j = 1j = 1,

and each of these numbers is distinct, so these are all the roots. We refer to

these numbers as the kth roots of unity. We can picture these roots as a set of k

equally spaced points lying on the unit circle in the complex plane, as shown

in Figure 5.9 for the case k = 8.

For our numbers x1, . . . , x2n on which to evaluate A and B, we will choose

the (2n)th roots of unity. It’s worth mentioning (although it’s not necessary for

understanding the algorithm) that the use of the complex roots of unity is the

basis for the name Fast Fourier Transform: the representation of a degree-d

i

–i

–1 1

Figure 5.9 The 8th roots of unity in the complex plane.

240 Chapter 5 Divide and Conquer

polynomial P by its values on the (d + 1)st roots of unity is sometimes referred

to as the discrete Fourier transform of P; and the heart of our procedure is a

method for making this computation fast.

A Recursive Procedure for Polynomial Evaluation We want to design an

algorithm for evaluating A on each of the (2n)th roots of unity recursively, so

as to take advantage of the familiar recurrence from (5.1)—namely, T(n) ≤
2T(n/2) + O(n) where T(n) in this case denotes the number of operations

required to evaluate a polynomial of degree n − 1 on all the (2n)th roots of

unity. For simplicity in describing this algorithm, we will assume that n is a

power of 2.

How does one break the evaluation of a polynomial into two equal-sized

subproblems? A useful trick is to define two polynomials, Aeven(x) and Aodd(x),

that consist of the even and odd coefficients of A, respectively. That is,

Aeven(x) = a0 + a2x + a4x
2 + . . . + an−2x

(n−2)/2,

and

Aodd(x) = a1 + a3x + a5x
2 + . . . + a(n−1)x

(n−2)/2.

Simple algebra shows us that

A(x) = Aeven(x2) + xAodd(x
2),

and so this gives us a way to compute A(x) in a constant number of operations,

given the evaluation of the two constituent polynomials that each have half

the degree of A.

Now suppose that we evaluate each of Aeven and Aodd on the nth roots of

unity. This is exactly a version of the problem we face with A and the (2n)th

roots of unity, except that the input is half as large: the degree is (n − 2)/2

rather than n − 1, and we have n roots of unity rather than 2n. Thus we can

perform these evaluations in time T(n/2) for each of Aeven and Aodd, for a total

time of 2T(n/2).

We’re now very close to having a recursive algorithm that obeys (5.1) and

gives us the running time we want; we just have to produce the evaluations

of A on the (2n)th roots of unity using O(n) additional operations. But this is

easy, given the results from the recursive calls on Aeven and Aodd. Consider
one of these roots of unity ωj ,2n = e2π ji/2n. The quantity ω2

j ,2n is equal to

(e2π ji/2n)2 = e2π ji/n, and hence ω2
j ,2n is an nth root of unity. So when we go

to compute

A(ωj ,2n) = Aeven(ω2
j ,2n) + ωj ,2nAodd(ω

2
j ,2n),

we discover that both of the evaluations on the right-hand side have been

performed in the recursive step, and so we can determine A(ωj ,2n) using a

5.6 Convolutions and the Fast Fourier Transform 241

constant number of operations. Doing this for all 2n roots of unity is therefore

O(n) additional operations after the two recursive calls, and so the bound

T(n) on the number of operations indeed satisfies T(n) ≤ 2T(n/2) + O(n). We

run the same procedure to evaluate the polynomial B on the (2n)th roots of

unity as well, and this gives us the desired O(n log n) bound for step (i) of our

algorithm outline.

Polynomial Interpolation We’ve now seen how to evaluate A and B on the

set of all (2n)th roots of unity using O(n log n) operations and, as noted above,

we can clearly compute the products C(ωj ,n) = A(ωj ,2n)B(ωj ,2n) in O(n) more

operations. Thus, to conclude the algorithm for multiplying A and B, we

need to execute step (iii) in our earlier outline using O(n log n) operations,

reconstructing C from its values on the (2n)th roots of unity.

In describing this part of the algorithm, it’s worth keeping track of the

following top-level point: it turns out that the reconstruction of C can be

achieved simply by defining an appropriate polynomial (the polynomial D

below) and evaluating it at the (2n)th roots of unity. This is exactly what

we’ve just seen how to do using O(n log n) operations, so we do it again here,

spending an additional O(n log n) operations and concluding the algorithms.

Consider a polynomial C(x) =
∑2n−1

s=0 csx
s that we want to reconstruct

from its values C(ωs,2n) at the (2n)th roots of unity. Define a new polynomial

D(x) =
∑2n−1

s=0 dsx
s, where ds = C(ωs,2n). We now consider the values of D(x)

at the (2n)th roots of unity.

D(ωj ,2n) =
2n−1
∑

s=0

C(ωs,2n)ωs
j ,2n

=
2n−1
∑

s=0

(

2n−1
∑

t=0

ctω
t
s,2n)ωs

j ,2n

=
2n−1
∑

t=0

ct(

2n−1
∑

s=0

ωt
s,2nωs

j ,2n),

by definition. Now recall that ωs,2n = (e2π i/2n)s. Using this fact and extending

the notation to ωs,2n = (e2π i/2n)s even when s ≥ 2n, we get that

D(ωj ,2n) =
2n−1
∑

t=0

ct(

2n−1
∑

s=0

e(2π i)(st+js)/2n)

=
2n−1
∑

t=0

ct(

2n−1
∑

s=0

ωs
t+j ,2n).

242 Chapter 5 Divide and Conquer

To analyze the last line, we use the fact that for any (2n)th root of unity ω �= 1,

we have
∑2n−1

s=0 ωs = 0. This is simply because ω is by definition a root of

x2n − 1= 0; since x2n − 1= (x − 1)(
∑2n−1

t=0 xt) and ω �= 1, it follows that ω is

also a root of (
∑2n−1

t=0 xt).

Thus the only term of the last line’s outer sum that is not equal to 0 is

for ct such that ωt+j ,2n = 1; and this happens if t + j is a multiple of 2n, that

is, if t = 2n − j. For this value,
∑2n−1

s=0 ωs
t+j ,2n =

∑2n−1
s=0 1= 2n. So we get that

D(ωj ,2n) = 2nc2n−j. Evaluating the polynomial D(x) at the (2n)th roots of unity

thus gives us the coeffients of the polynomial C(x) in reverse order (multiplied

by 2n each). We sum this up as follows.

(5.14) For any polynomial C(x) =
∑2n−1

s=0 csx
s, and corresponding polynomial

D(x) =
∑2n−1

s=0 C(ωs,2n)xs, we have that cs = 1
2n D(ω2n−s,2n).

We can do all the evaluations of the values D(ω2n−s,2n) in O(n log n)

operations using the divide-and-conquer approach developed for step (i).

And this wraps everything up: we reconstruct the polynomial C from its

values on the (2n)th roots of unity, and then the coefficients of C are the

coordinates in the convolution vector c = a ∗ b that we were originally seeking.

In summary, we have shown the following.

(5.15) Using the Fast Fourier Transform to determine the product polynomial

C(x), we can compute the convolution of the original vectors a and b in

O(n log n) time.

Solved Exercises

Solved Exercise 1

Suppose you are given an array A with n entries, with each entry holding a

distinct number. You are told that the sequence of values A[1], A[2], . . . , A[n]

is unimodal: For some index p between 1 and n, the values in the array entries

increase up to position p in A and then decrease the remainder of the way

until position n. (So if you were to draw a plot with the array position j on the

x-axis and the value of the entry A[j] on the y-axis, the plotted points would

rise until x-value p, where they’d achieve their maximum, and then fall from

there on.)

You’d like to find the “peak entry” p without having to read the entire

array—in fact, by reading as few entries of A as possible. Show how to find

the entry p by reading at most O(log n) entries of A.

Solved Exercises 243

Solution Let’s start with a general discussion on how to achieve a running

time of O(log n) and then come back to the specific problem here. If one needs

to compute something using only O(log n) operations, a useful strategy that

we discussed in Chapter 2 is to perform a constant amount of work, throw

away half the input, and continue recursively on what’s left. This was the

idea, for example, behind the O(log n) running time for binary search.

We can view this as a divide-and-conquer approach: for some constant

c > 0, we perform at most c operations and then continue recursively on an

input of size at most n/2. As in the chapter, we will assume that the recursion

“bottoms out” when n = 2, performing at most c operations to finish the

computation. If T(n) denotes the running time on an input of size n, then

we have the recurrence

(5.16)

T(n) ≤ T(n/2) + c

when n > 2, and

T(2) ≤ c.

It is not hard to solve this recurrence by unrolling it, as follows.

. Analyzing the first few levels: At the first level of recursion, we have a

single problem of size n, which takes time at most c plus the time spent

in all subsequent recursive calls. The next level has one problem of size

at most n/2, which contributes another c, and the level after that has

one problem of size at most n/4, which contributes yet another c.

. Identifying a pattern: No matter how many levels we continue, each level

will have just one problem: level j has a single problem of size at most

n/2j, which contributes c to the running time, independent of j.

. Summing over all levels of recursion: Each level of the recursion is

contributing at most c operations, and it takes log2 n levels of recursion to

reduce n to 2. Thus the total running time is at most c times the number

of levels of recursion, which is at most c log2 n = O(log n).

We can also do this by partial substitution. Suppose we guess that T(n) ≤
k logb n, where we don’t know k or b. Assuming that this holds for smaller

values of n in an inductive argument, we would have

T(n) ≤ T(n/2) + c

≤ k logb(n/2) + c

= k logb n − k logb 2 + c.

244 Chapter 5 Divide and Conquer

The first term on the right is exactly what we want, so we just need to choose k

and b to negate the added c at the end. This we can do by setting b = 2

and k = c, so that k logb 2 = c log2 2 = c. Hence we end up with the solution

T(n) ≤ c log2 n, which is exactly what we got by unrolling the recurrence.

Finally, we should mention that one can get an O(log n) running time, by

essentially the same reasoning, in the more general case when each level of

the recursion throws away any constant fraction of the input, transforming an

instance of size n to one of size at most an, for some constant a < 1. It now

takes at most log1/a n levels of recursion to reduce n down to a constant size,

and each level of recursion involves at most c operations.

Now let’s get back to the problem at hand. If we wanted to set ourselves

up to use (5.16), we could probe the midpoint of the array and try to determine

whether the “peak entry” p lies before or after this midpoint.

So suppose we look at the value A[n/2]. From this value alone, we can’t

tell whether p lies before or after n/2, since we need to know whether entry

n/2 is sitting on an “up-slope” or on a “down-slope.” So we also look at the

values A[n/2 − 1] and A[n/2 + 1]. There are now three possibilities.

. If A[n/2 − 1]< A[n/2]< A[n/2 + 1], then entry n/2 must come strictly

before p, and so we can continue recursively on entries n/2 + 1through n.

. If A[n/2 − 1]> A[n/2]> A[n/2 + 1], then entry n/2 must come strictly

after p, and so we can continue recursively on entries 1 through n/2 − 1.

. Finally, if A[n/2] is larger than both A[n/2 − 1] and A[n/2 + 1], we are

done: the peak entry is in fact equal to n/2 in this case.

In all these cases, we perform at most three probes of the array A and

reduce the problem to one of at most half the size. Thus we can apply (5.16)

to conclude that the running time is O(log n).

Solved Exercise 2

You’re consulting for a small computation-intensive investment company, and

they have the following type of problem that they want to solve over and over.

A typical instance of the problem is the following. They’re doing a simulation

in which they look at n consecutive days of a given stock, at some point in

the past. Let’s number the days i = 1, 2, . . . , n; for each day i, they have a

price p(i) per share for the stock on that day. (We’ll assume for simplicity that

the price was fixed during each day.) Suppose during this time period, they

wanted to buy 1,000 shares on some day and sell all these shares on some

(later) day. They want to know: When should they have bought and when

should they have sold in order to have made as much money as possible? (If

Solved Exercises 245

there was no way to make money during the n days, you should report this

instead.)

For example, suppose n = 3, p(1) = 9, p(2) = 1, p(3) = 5. Then you should

return “buy on 2, sell on 3” (buying on day 2 and selling on day 3 means they

would have made $4 per share, the maximum possible for that period).

Clearly, there’s a simple algorithm that takes time O(n2): try all possible

pairs of buy/sell days and see which makes them the most money. Your

investment friends were hoping for something a little better.

Show how to find the correct numbers i and j in time O(n log n).

Solution We’ve seen a number of instances in this chapter where a brute-

force search over pairs of elements can be reduced to O(n log n) by divide and

conquer. Since we’re faced with a similar issue here, let’s think about how we

might apply a divide-and-conquer strategy.

A natural approach would be to consider the first n/2 days and the final

n/2 days separately, solving the problem recursively on each of these two

sets, and then figure out how to get an overall solution from this in O(n) time.

This would give us the usual recurrence T(n) ≤ 2T
(

n
2

)

+ O(n), and hence

O(n log n) by (5.1).

Also, to make things easier, we’ll make the usual assumption that n is a

power of 2. This is no loss of generality: if n′ is the next power of 2 greater

than n, we can set p(i) = p(n) for all i between n and n′. In this way, we do

not change the answer, and we at most double the size of the input (which

will not affect the O() notation).

Now, let S be the set of days 1, . . . , n/2, and S′ be the set of days n/2 +
1, . . . , n. Our divide-and-conquer algorithm will be based on the following

observation: either there is an optimal solution in which the investors are

holding the stock at the end of day n/2, or there isn’t. Now, if there isn’t, then

the optimal solution is the better of the optimal solutions on the sets S and S′.

If there is an optimal solution in which they hold the stock at the end of day

n/2, then the value of this solution is p(j) − p(i) where i ∈ S and j ∈ S′. But

this value is maximized by simply choosing i ∈ S which minimizes p(i), and

choosing j ∈ S′ which maximizes p(j).

Thus our algorithm is to take the best of the following three possible

solutions.

. The optimal solution on S.

. The optimal solution on S′.

. The maximum of p(j) − p(i), over i ∈ S and j ∈ S′.

The first two alternatives are computed in time T(n/2), each by recursion,

and the third alternative is computed by finding the minimum in S and the

246 Chapter 5 Divide and Conquer

maximum in S′, which takes time O(n). Thus the running time T(n) satisfies

T(n) ≤ 2T

(

n

2

)

+ O(n),

as desired.

We note that this is not the best running time achievable for this problem.

In fact, one can find the optimal pair of days in O(n) time using dynamic

programming, the topic of the next chapter; at the end of that chapter, we will

pose this question as Exercise 7.

Exercises

1. You are interested in analyzing some hard-to-obtain data from two sepa-

rate databases. Each database contains n numerical values—so there are

2n values total—and you may assume that no two values are the same.

You’d like to determine the median of this set of 2n values, which we will

define here to be the nth smallest value.

However, the only way you can access these values is through queries

to the databases. In a single query, you can specify a value k to one of the

two databases, and the chosen database will return the kth smallest value

that it contains. Since queries are expensive, you would like to compute

the median using as few queries as possible.

Give an algorithm that finds the median value using at most O(log n)

queries.

2. Recall the problem of finding the number of inversions. As in the text,

we are given a sequence of n numbers a1, . . . , an, which we assume are all

distinct, and we define an inversion to be a pair i < j such that ai > aj.

We motivated the problem of counting inversions as a good measure

of how different two orderings are. However, one might feel that this

measure is too sensitive. Let’s call a pair a significant inversion if i < j and

ai > 2aj. Give an O(n log n) algorithm to count the number of significant

inversions between two orderings.

3. Suppose you’re consulting for a bank that’s concerned about fraud de-

tection, and they come to you with the following problem. They have a

collection of n bank cards that they’ve confiscated, suspecting them of

being used in fraud. Each bank card is a small plastic object, contain-

ing a magnetic stripe with some encrypted data, and it corresponds to

a unique account in the bank. Each account can have many bank cards

Exercises 247

corresponding to it, and we’ll say that two bank cards are equivalent if

they correspond to the same account.

It’s very difficult to read the account number off a bank card directly,

but the bank has a high-tech “equivalence tester” that takes two bank

cards and, after performing some computations, determines whether

they are equivalent.

Their question is the following: among the collection of n cards, is

there a set ofmore than n/2of them that are all equivalent to one another?

Assume that the only feasible operations you can do with the cards are

to pick two of them and plug them in to the equivalence tester. Show how

to decide the answer to their question with only O(n log n) invocations of

the equivalence tester.

4. You’ve been working with some physicists who need to study, as part of

their experimental design, the interactions among large numbers of very

small charged particles. Basically, their setup works as follows. They have

an inert lattice structure, and they use this for placing charged particles

at regular spacing along a straight line. Thus we canmodel their structure

as consisting of the points {1, 2, 3, . . . , n} on the real line; and at each of

these points j, they have a particle with charge qj. (Each charge can be

either positive or negative.)

They want to study the total force on each particle, by measuring it

and then comparing it to a computational prediction. This computational

part is where they need your help. The total net force on particle j, by

Coulomb’s Law, is equal to

Fj =
∑

i<j

Cqiqj

(j − i)2
−

∑

i>j

Cqiqj

(j − i)2

They’ve written the following simple program to compute Fj for all j:

For j = 1, 2, . . . , n

Initialize Fj to 0

For i = 1, 2, . . . , n

If i < j then

Add
C qi qj

(j − i)2
to Fj

Else if i > j then

Add − C qi qj

(j − i)2
to Fj

Endif

Endfor

Output Fj

Endfor

248 Chapter 5 Divide and Conquer

It’s not hard to analyze the running time of this program: each

invocation of the inner loop, over i, takes O(n) time, and this inner loop

is invoked O(n) times total, so the overall running time is O(n2).

The trouble is, for the large values of n they’re working with, the pro-

gram takes several minutes to run. On the other hand, their experimental

setup is optimized so that they can throw down n particles, perform the

measurements, and be ready to handle n more particles within a few sec-

onds. So they’d really like it if there were a way to compute all the forces

Fj much more quickly, so as to keep up with the rate of the experiment.

Help them out by designing an algorithm that computes all the forces

Fj in O(n log n) time.

5. Hidden surface removal is a problem in computer graphics that scarcely

needs an introduction: when Woody is standing in front of Buzz, you

should be able to see Woody but not Buzz; when Buzz is standing in

front of Woody, . . . well, you get the idea.

The magic of hidden surface removal is that you can often compute

things faster than your intuition suggests. Here’s a clean geometric ex-

ample to illustrate a basic speed-up that can be achieved. You are given n

nonvertical lines in the plane, labeled L1, . . . , Ln, with the ith line specified

by the equation y = aix + bi. We will make the assumption that no three of

the lines all meet at a single point. We say line Li is uppermost at a given

x-coordinate x0 if its y-coordinate at x0 is greater than the y-coordinates

of all the other lines at x0: aix0 + bi > ajx0 + bj for all j �= i. We say line Li is

visible if there is some x-coordinate at which it is uppermost—intuitively,

some portion of it can be seen if you look down from “y = ∞.”

Give an algorithm that takes n lines as input and in O(n log n) time

returns all of the ones that are visible. Figure 5.10 gives an example.

6. Consider an n-node complete binary tree T , where n = 2d − 1 for some d.

Each node v of T is labeled with a real number xv. You may assume that

the real numbers labeling the nodes are all distinct. A node v of T is a

local minimum if the label xv is less than the label xw for all nodes w that

are joined to v by an edge.

You are given such a complete binary tree T , but the labeling is only

specified in the following implicit way: for each node v, you can determine

the value xv by probing the node v. Show how to find a local minimum of

T using only O(log n) probes to the nodes of T .

7. Suppose now that you’re given an n × n grid graph G. (An n × n grid graph

is just the adjacency graph of an n × n chessboard. To be completely

precise, it is a graph whose node set is the set of all ordered pairs of

Notes and Further Reading 249

51

2

3

4

Figure 5.10 An instance of hidden surface removal with five lines (labeled 1–5 in the

figure). All the lines except for 2 are visible.

natural numbers (i, j), where 1≤ i ≤ n and 1≤ j ≤ n; the nodes (i, j) and

(k, ℓ) are joined by an edge if and only if |i − k| + |j − ℓ| = 1.)

We use some of the terminology of the previous question. Again,

each node v is labeled by a real number xv; you may assume that all these

labels are distinct. Show how to find a local minimum of G using only

O(n) probes to the nodes of G. (Note that G has n2 nodes.)

Notes and Further Reading

The militaristic coinage “divide and conquer” was introduced somewhat after

the technique itself. Knuth (1998) credits John von Neumann with one early

explicit application of the approach, the development of the Mergesort Algo-

rithm in 1945. Knuth (1997b) also provides further discussion of techniques

for solving recurrences.

The algorithm for computing the closest pair of points in the plane is due

to Michael Shamos, and is one of the earliest nontrivial algorithms in the field

of computational geometry; the survey paper by Smid (1999) discusses a wide

range of results on closest-point problems. A faster randomized algorithm for

this problem will be discussed in Chapter 13. (Regarding the nonobviousness

of the divide-and-conquer algorithm presented here, Smid also makes the in-

teresting historical observation that researchers originally suspected quadratic

time might be the best one could do for finding the closest pair of points in

the plane.) More generally, the divide-and-conquer approach has proved very

useful in computational geometry, and the books by Preparata and Shamos

250 Chapter 5 Divide and Conquer

(1985) and de Berg et al. (1997) give many further examples of this technique

in the design of geometric algorithms.

The algorithm for multiplying two n-bit integers in subquadratic time is

due to Karatsuba and Ofman (1962). Further background on asymptotically fast

multiplication algorithms is given by Knuth (1997b). Of course, the number

of bits in the input must be sufficiently large for any of these subquadratic

methods to improve over the standard algorithm.

Press et al. (1988) provide further coverage of the Fast Fourier Transform,

including background on its applications in signal processing and related areas.

Notes on the Exercises Exercise 7 is based on a result of Donna Llewellyn,

Craig Tovey, and Michael Trick.

